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The problem of optimal control by solution of a system of Ito’s stochastic 
integral equations of the general form is considered in the case when control 
parameters appear in nonhomogeneous terms and coefficients of equations. 
Necessary conditions of optimality are established (in the form of principles 
of minimum) for the problem of optimal control with constraints, and an ex- 
ample is presented. 

Two trends can be discerned in the theory of control of random processes defined by 
Ito ‘s stochastic integral equations, The first, developed in [ 1,2 ] L is related to the de - 
rivation of Bellman’s equation for the gain function. The second, whose origin can be 
traced to [3,4 1, is based on the derivation of necessary conditions of optimality in the 
form of principles of minimum (stochastic principles of minimum 1. 

The present investigation follows the second trend, and is devoted to the develop - 
ment of a general functional method for stochastic control systems I$, 6 1. 

1. Statement of the problem. The control of a process defined by a sys- 
tem of stochastic integral equations of the general form 

t t 

1ll(t)=‘~t(t,~(t))iSdt(z,rl(r),a(z))dz+SBtj(~,~(7),b(r))~~j(?) (‘sl) 
I 

r--J,2 ,..., n: jxO1,2 ,..., m 

is considered in the case when control functions a (z, o), b (7, 0) and c (7, W) 
appear in coefficients and nonhomogeneous terms of equations Jn (1.1) cpi (t, c, 0)s 

A j (g, x, a, o) and Bij if, Z, b, o) denote random fields ( 0 is the event) t the 
second integrals are understood in Ito’s meaning [7 J, and recurrent subscripts here and 
below indicate summation, 

A particular example of such problem in which cpt (t, c, 0) = ‘pt (0) and 
functions Bgj (t, X, b, O) z &j (t) (or depend on nonrandom components of solution 

rl (t, 0) ) was investigated in [3 ] by a method different from the one used here. 
Let ($2, F, P) be the total probability space and w (t, o) be an m -dimen- 

sional Wiener process consistent with a nondecreasing set of o-algebras Ft C F, 
t > 0 complete in measure P , We denote by .L, (BF), 1 < p ( 00 the 

Banach space of the progressively measurable ( B F -measurable) over the stream { Ft) 
of random functions up (t, o) , t E [O, 2’1 and o E Q with the finite norm 

IIWlp= [ j IWAPd(mes x P,1’” 
co. 1xn 

Let HP (BP) be a set of functions from Lp (BP) for which sup M I$ (t, 
o)l”<oo, 0 < t < 2’. Set HP (BF) is dense everywhere in & (BF). 
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Let Lp, n (BF) = Lp (BF) X ..- X Lp (BF) ( n times) be the space of vector 

functions E (t, o) = {& (t, a), . . ., En (t, co)} with norm II E 115, n = II Er llpp 

+ a** + II bt lIPP. Similarly HP,, (BF)=HP (BF) x . . . x If, (BP) (n times). 
Functions ‘pi (t, C, w), Ai (t, x, U, o), and Bii (t, x1 b, w) have the follow - 

ing properties : 1) they are measurable over the totality of variables when 

t E [o, Tl, J: = {q, . . ., xn} E En, w E Q, a= {a,, . . . 

a,,}EDaCEmlbr{bl, . . . . b,,}EDbCEmz 

c = (Cl, . . .) cm,} E DC C Em 

where D”, D”, and D” are bounded sets in respective Euclidean spaces ; 2 1 they 

are Ft -measurable over o for fixed t, t, a, b, c from [O, 7’1 x E’ x Da x 
Db x DC; and 3) for fixed t, t, and o they are continuous over the totality 

of remaining variables. Let us assume that functions Ai (t, 2, a, w) and Bij (t, 
z, b, 0) are differentiable with respect to variables zk and that their derivatives 

A xk’ and Brk’ are continuous over the totality of variables (z, a) and (r, b) 
respectively, and their absolute values are uniformly bounded by the constant number 

N > 0 for all t, z, a, b, and o in the determination region. We also as - 

sume that 1 (Pi (t, C, 0) I < ai(t, O) E H, (BF), r > 2 for all c E DC. 
For every t E [O, T] we specify sets Da (t), Db (t), and DC (t) of random 

vectors that are Ft -measurable and assume the values Da, Db, and DC respect - 

ively . We assume that sets Di (t), i = U, b, c , are nondecreasing and continuous 

on the left with respect to t : Di (t) = Di (0) U Di (s), 0 < s < t. 
We consider vector functions a (t, co), b (t, a), and c (t, o) to be admissible 

controls, if their components are BF -measurable and 

a (t, co) E D” (t), b (t, co) E Db (t), c (t, o) E DC (t), Vt 

A random process H,,, (BP) th t t’ f’ a sa is res almost certainly (1.1) for every 

t E [0, T] is called the solution of system (1.1) which corresponds to the admissible 

control (I (t, o) s {a (t, co), b (t, co), c (t, co)} (see PI). 
Let us consider the optimization problem of finding among the admissible controls 

u (t, 0) that satisfy the constraint 

L(u) = MST L 6, %4(s), U(S))dS\(O 
0 

a control that minimizes the functional 

J(u) = M j J (s, rlu (~1, u (s)) ds 
0 

where ‘qU (a) is a solution of system (1.1) which corresponds to control u (s) and 

M is the symbol of mathematical expectation. 

Let functions I, (t, x, a, b, c, co) and J (t, 2, a, b, c, o) satisfy the fol- 

lowing conditions: 1) be measurable over the totality of variables for t7 2, a, b, C, 
o E [O,T] X En X Da X Db X DC X Q; 2) be Fc -measurable with respect --. 

to CO for fixed t, X, a, b, c; and 3 ) be continuous over the totality of variables 
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(a, b, c) for almost all t, 5, and 0 from [O, T] X En X Q and be twice 
differentiable with respect to variable Sk:,. Let ~~~rnore the following conditions 
for the order of increase with respect to 5: 

where &, Ks, and Ks are constant numbers, be satisfied for almost all t, a, b, C, 
and 6.1 from the determination region. 

2. Variation of controf8, Let 2.8 (t, 0) z {a” (8, o), b” (t, o), co (t, 
61)) be the optimal admissible control and q” (t, o) the relates solution of system 

(1.1). Let us derive a variant of control ~8 (t, 0) G {as (t, CO), be (t, o), 
Ce (t, o)}.Let %I E IO, Tl. We take a finite set of points {zk} from the interval 
(a,, 2’). Let {al,‘} be an arbitrary finite set of no~egative numbers and (uk’ (a)), 
{bk* (a)}, and {Ckr (0)) be sets of random vectors from Do (z,,), p (zo), and 

D” (zO) respectively, We define the component ue (t, o) of the control variant by 

a&l (4 2 --q($f 
a8 (t, 0) = 

a*@, a), t = lo, wy$ $1 
* 

For fairly small 8, 0 < E < .sa, intervals &’ evidently lie in (5, T) 
and do not intersect pairwise. Components bt (t, w) and Ce (t, o) of variant 

u8 (t, w) with corresponding parameters {&* (a)} and {ck* (0)) are similarly 
defined. 

The following theorem on the existence of solution of system (1.1) and its stability 
with respect to control perturbations is valid, 

Theorem 1. If functions cpt (t, c, o), Ai (t, x, a, o) and &J (k 2, b, 0) 
satisfy the ~~~~0~ formu~ted above, then there exists a positive number E* , 0 < 

E* < E, suchthat to each variant ue (t, 0) corresponds for 0 < e < E* the 
unique solution qc (t, w) E H,,,, (BF) of system (1.1) and 11 11~ - q” lj,.,n - 0 
when c--+0. 

Proof. The existence an uniqueness of solution of system (1.1) directly follows 
from the theorem in [?I. Since for any admissible control function rp (6 c (9) E 

II,., n (BF) hence also the related solution q (t) E H,, n (BF). 
TO prove the stability of the optimal solution we consider the system of linear in - 

tegral stochastic equations 

Et (Q = fPf @) + \ ;; - ts, sit w, ~8 (4) ik (4 as + 
0 

(2.1) 
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where the “average” points qlike and r)stfke are determined with unit probability 
by the equalities 

(2.2) 

Lemma 1. Thesolution % (4 E &c (W of system (2.1) exists and is 

unique for any function 9 (t) E Hp,n (BP), p > 2 , and the estimate 

II % Ihn < CP II ‘II, lb, nv Cp = Cp b, m, n, T, N) (2.3) 

is valid. 

Proof. The existence and uniqueness of solution of system (2.1) follows from the 
same theorem in [7 1. By applying the HIjlder inequality to indentity (2.1) we obtain 

from which, using the estimate of Ito’s integral of moments [8 I, we have 

~i~*~‘~1’<3’-L(MIPIII~l~+Cp’f~~lll.(r)/~~s} 

Summing by i, applying Gronwall ‘s lemma and integrating along lo, Tl, we 
obtain the required estimate (2.3 1. 

To prove the theorem it remains to note that the random vector function % (t) = 

rle (0 - q” (t) satisfies system (2.1) when 

$r (t) = A&+ (t) s Q+ (t) + \ &A (a) h + \ @ii (4 hj (a) E 
0 0 

Hr., VW 

Am (t) = Qi (t, f? (0) - 01 (6 8 (0) I 

A&i (t) z Ai (t, q” (t), ae (t>> - At (t, 9’ (t), a0 (t)> 

&$ij (t) E Bij (tt q” (t), p (t>> - Bij (tl q“ (t), b” (t)) 

Then on the basis of (2.3 1 we have 
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3. Derivation of integral representations &J and A&. By 
Lemma 1 the linear system (2.1) determines the linear operator R,,‘: HP, )I (BF) 3 
HP, n (BF), E = R~I@. Since the set HP,n (BP) is dense everywhere in Lp,,, 
.f’B$ i~d~timat~ (2.3 > is valid, hence RBF permits the extension in conti~i~ 

P, n (RF)‘, i. e, tie continous operator & : L, n W? --t h, n W% 
p ; 2, 11 R, 11’6 cp has been determined, 

We defir;e the increment A,q (t) as follows: 

&I = R&Q, (3.1) 

To determine the first variations of functionals J and L we define the integral re- 
presentations of increments by 

A,J (u) SE J (~8) - J (u”), de L (u) E L (~8) - L (u”) 

As an example let us consider &J 
T 

A,J=M 
s 

-& (8, & (s)$ u8 (s)) A,Q (s) ds + M j A,J (s) ds s (3* 2 ) 
0 0 

A’J + Ar)J 

(Au J @I = J (4 r1O (t), ue UN - J (4 q” PI, u” W) 

where the average points qsp are determined by equalities of the form (2.2 1 for 
function J. 

We determine in La, n (BF) th e set (in 8 ) of bounded linear functionals 

{C): (%, $1) = M[ -& (6 ~~{~), U”@))gK (s) ds 
0 

Using the Riesz theorem on the linear functional representation, by virtue of (3.1) 
we obtain 

Substi~~g tt& expres&n into (3.2) we obtain the sought integral representation 

AeJ = M s’ xc” (t) A&+ (t) dt + M ii&J(t) ~3 (3.3) 

0 0 

~t~~ow~tfor 1<q’ <2 

II xe - x0 I1cf.n 3 0, e+O (3.4) 
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where 

and &I : &,n (BP) --t hp., (BF), P > 2 is a Linear operator linked to system 

‘a aA. 
(3.5) 

Wehave (q > 2, 1 i q -t 1 I q’ = 1) 

We shall show that the last operator norm in (3.6 1 tends to zero when E -+ 0. We 
take a monoto~ca~y decreasing sequence of positive numbers 6, --f 0 with m -+ 00. 

For every function cp in a unit sphere in A,,= (BP) there exists a sequence (vm) c 

%.rx (BF) such that 11 v, - rPm IIM < 6,. Let {Pm}, (Zom) C N,,, (W) 
be sequences of solutions (2.1) and (3.5)) respectively, that correspond to {cpm}. Then 

If (Ra - Rs) Cp II&n < II R& (9, - Cpm) 1ls.n + II &! (Cp - qm> l/s,n + 
II -%(Pm - Roqrn Ilz,n < 2C3T+‘jf2@m + ff gem - $orn IJ~,~ 

(3.7) 

Using the estimate of moments of Ito’s integral, Gronwall’s lemma, and Hblder’s 
inequality, we obtain for the norm the estimate 

II Pm - Eom llz,n’ < K* C,2 (I + Srnl” 11 Fe l)p/(p-:. 

in propor- 

tion to mes X P (Theorem 1). functions A,, and &, are continuous with 

respect to (r, a) and (5, b) , respectively, and are bounded, hence 11 l’s 11 -+ 0 

when a-+0. 
It now follows from (3.7 ) that 11 (& - R,) cp Ilz,% + 0 uniformly when E =+ 0 

for 9, selected from the unit sphere, which means that 

The conditions imposed on the integrand of functional J ensures the following 

passing to limit: 
II TR-- Ro f/(~,,,p--, 0, E It o (3.9) 
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Thus(3.4) followsfrom(3.91, (3.81, and(3.6). 

4. First variations of functionals. We define variations of functionals 
as the limits 

where {Q} and 
we have 

AP'J = 

6J = lim 
8kdO 

-$ Ae,J, 6L = lim 6 A,$, 
bk-0 k 

{ 6,) are some subsequencies of the sequence e-to. From (3.3) 

Using (3.4) it is possible to show that for any pair of integers N and &LJ and an 

arbitrary set of random quantities (Ukl (CO)}, {bk’ (o)}, and {ckl (a)}, k = 1, 
2, . . ., N and 1 = 1, 2, . . . , M there exists a set 

mes Ef* = 
JZY c @a, T), 

T -z. such that for any arbitrary set of points {zk} C EuNM 

lim -+- (A~)J + Ap)J) = C C$ [g:‘L (zk) + gr (fk)] 
e4 

1.k 
(4.1) 

glzk (z) = M IJ (z, I)’ (z), uk’, b;, ck’) - J h $ b), U” (@)I 
dk b) = M {xi” C-G hz b, ckl) - rpt (z, co (‘c))l + w b) x 

I4 (T q” b), 4) - Ai .(-h Y’&), a* (W 
For passing to limit in (1 I E) APJ we impose additional constraints on the 

stream (Ft} of a-algebras and make the necessary assumptions ,namely that 

Ft E= o [w (s), S < t1 (4.2) 

Lemma 2, If condition (4.2 > is satisfied and cp (t, o) E Lz (BP) , there 
exists a unique function h (t, s, w) E L,,, (B x BF) such that mes x p -nearly 

everywhere in [O, Tl X 52 t 

(4.3 1 

Operator G : h = Gcp from Ls (BF) is then bounded in LsSrn (B X BJ7 
and 11 G II = 1. Here La,, (B X BF) is the Ls -space of m-measurable 

random fields with B X BF -measurable ( B is the Bore1 o -algebra in Ei ) 

components. 
Proof. Let ‘1 (rf a) = XtO,tl) (r)rlo(m) + . - - + Xql,~~(t)%a_~ (4 6s -h (BF), 

where (tk}, k = 0, 1, _ . -, n represents the finite subdivision of segment [0, 2’1, 



250 S . F . Morozov and I. P. Smimov 

G%%)(t) is the indicator function of the half-interval [a, &, and ?k (0) - pi, 
is a measurable random quantity (with finite second moment). If conditions (4.2 ) are 
satisfied ,then according to [9], there exists for each tk a A(“) (s, 0) E L,,,, ([0, 

tk] X Q, BF) such that almost certainly 

*k 

Continuing hck) (s, of in [O, 2’1 X B thrargh zero and setting P (J, 8, 0) = 

X[a,t,) (~)~(l) 6, 0) + * * * + X[f*_+TJ (t)hn-’ (a, 0) we establish the lemma for step 
functions. Let q (t, 0) be an arbitrary function from LB (BP) which we approximate 

by a sequence of step functions fi fin - cp 11, --f 0 (see [lo]) when n - 00. 
Let p(n) (t, s, 61) be a sequence of stochastic kernels that corresponds to (Q-J . From 

(4.3 ) we then have 
t 

\ * I@’ tt> s, 0) - $“) (t, s, co)] 3 dw (s, o) = 
b 

3 

?, 6 a) - qk & a) + M h,, (b 0) - qn @, a)] 

from which, using the properties of Ito ‘s integral, we obtain 

The sequence (EL’? is thus fundamental in La,= (B x BF) and, because of 
completeness of that space, it converges to some element I of the latter. The Fubini 
theorem on stochastic integrals (see El1 ]) shows that the stochastic integral 

s hj (f, s, 0) dWi (s, of 
0 

is determinate and BF -measurable with respect to t and 0. Finally 

Ilc-w-~~j~t 
i 

~s~~)~~~(S’~)Ib~Il’P-~*Ib+ 

11 M (q - qnj i&(&T) + fl h - p@) !k$, m(BxBF) ---) O, n - O” 
By raising the identity (4.3 ) to the second power and integrating with respect to 

measure P, we obtain a confirmation of the second statement of the lemma. 

Applying the proved lemma to the set f S > 0 ) of functions x’ (t, 0) E 

Ls,- (BF), we obtain a set of mat&es (htj* (t, s, o)} : (Hill, . . . . him&} = GxI=. 
We introduce the notation 

and shall show that for zi < 6 < 2 

II Xij' - Xij' 116 ---t 0, S-+0 
(4.4) 

Applying twice the Holder inequalities and the lower boirnd estimate for the 6 -mo.- 
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ment of Ito’s integral [8 1, we obtain the sequence of inequalities 

$3 II XE - x0 IL (-43 = Aa (6) > 0) 

where the inequality 

(2’ - t)a-1 < D&13-1, 0 < t < T, 0 < DB = D,, (6) < oo 

is also used. Hence (4.4 ) follows from (3.4 ) . 
Reverting to A,W J we now have 

Ai4’J = ikf { xi”(t) [i A$ii (s) dwj (s)] dt = 

0 

i s 
dtMt &je(t,s) dw,(s)\Ap*j(s)dwj(s) = 

0 0 0 

! s 
dt M * Xij* (t, S) Aaij (S) dS = M [ AbBij (S) %ij* (S) do = 

0 0 

3 M ‘s Tr AaB (4 (x* (4)’ b 
1 qw,) 

Using (4.4) it is possible to show that for any pair of integers N and ikf and an 

arbitrary set {b,’ (a)} there exists a set EbNM c ho, T] of complete measure 

mes Eb NM WT-_zosuch that for an arbitrary set of points {‘Ck} C ErN 

lim + At; J = c axzgkk (tk) 
Ok+0 k 

Lk 
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g,*” (T) = iv Tr fB (z, f (‘t), hi) - B (‘t, 6’ (4, b” (%))I (x0 @I)’ 

where Tr denotes the taking of a matrix spur and the prime denotes a transposition. 
Taking into account (4.1) we find that for zk E EWNM n EbnrM the first 

variation of functional ,.T may be represented as 

(4.5) 

The determination region in (4.5) depends on numbers hr and M and the specific 
sets (a&}, {bl,z>, and {ckr}. T o e rminate that dependence we separate in L, (fz, 1’ 

F, P) the denumerable and everywhere dense net of random quantities S,. It can 

be shown that transitions to limit which determine the variation 6J are realized in 
some subsequence {ak} on set E C (‘CO, T), mes E = T - z. for any arbitrary 
admissible sets 

@kl)CDQ (TO) fl h,m,, ~b~}c~'(~~) n Sz,m, 

h? c DC (To) II ~2,ina 

(S2,, E S2 X . . . X Ss (ntimes)) 

In~~u~ng by analogy to T, and Xe the pair P,, v” = &* P,, we deter - 

mine variation 6L. 

5. The principles of minimum. Let us consider in E2 the set of pairs 
w ‘c ~~~~r~~J, w hl h is obtained for all possible admissible sets of points {‘$} C E, 

{aLI} , and random quantities t&r}, {b&l} and (err}, It can be shown 
that Q is a convex cone whose vertex is at the coordinate origin, Let R = {;ti, z2 : 
21 < 0, 22 < O} C E2. Optimality of the admissible control U” (t, o) implies 

that cones Q and R do not intersect, which shows that they are separated by some 

straight line with p = (pi, ps), pi2 f p,s2 # 0 as its normal vector. Directing 
that vector toward cone Q we obtain 

p.,hJ + p& > 0 (5.1) 

Let us specify the particular set of parameters 

-s-i c E; ali (4, b,’ (a), ~1’ (w); rg* = 1 

Calculating the related set of variations with allowance for the continuity of func- 

tions Ai, Bij, and cpi with respect to a, b, and c ,respectively , and for the 

properties of sets W (t), t = a, b, c, we obtain from (5.1) the following definition 
of the principles of m~imum. 

The principles of minimum. If U* (t, o) is the optimal admissible 
control and rl” (r, 0) E K,n W), r > 2 is the related optimal solution of 

system (1.1) , then there exist functions x0 and v0 E L%,, (BF) that are uniquely 
determined by the operator formulas 

x0 = Ro*To, v” = R,” PO 

and nonnegative numbers [hl, pLn (pr2 + p.s2 # 0) such that almost everywhere in 

10, 2-1 
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(5.2) 

where inf istakenwithrespecttoall a (w)EP(~), b (a) E ~b(~),and~(~~~c(~) * 

Notes. 3 ‘. It is possible to obtain from (5.2 ) incomplete principles of minimum 
for any two groups of control parameters, as well as for each group separately. For in * 

stance) to obtain the principles of m~imum for the group of parameters (a, C} it is 

sufficient to set in the right-hand side of (5.2 ) b (CO) = bt” (0) s b” (t, a), and so on. 

2’. For the incomplete principle of mi~mum to be valid for the group of para- 
meters (a, C} it is sufficient that the assumptions made in Sect. 1 are satisfied. For 
the validity of that principle for a group of parameters containing parameter {b} it is 

necessary that condition (4.2 ) is satisfied. 

3 ‘. If P (t), i = a, b, c ) is assumed to be a set of vectors from Di that are 

independent of the event O, then (5.2 ) represents the necessary condition of optima~ty 

in the problem with determinate control. 

6, Exam pie. Zt can be shown that operator RO introduced in Sect. 3 has a 
bounded inverse operator Ro-l and that, consequently , the equality @s-l)* = (R,*)” 

is satisfied, This means that functions X* and v” can be determined by solving the 

conjugate problem 

(R,+)*xQ = T,, (Rg-l)*v’ = P, (6.1) 

When condition (4.2) is satisfied it is possible to obtain an explicit formula for 
operator &OX)* and thus prove that the solution of problem (6.1) satisfies mesX P - 
almost everywhere the identity 

(6.21 

where M f g 1 F 1 represents the conditional mathematical expectation of the random 
quantity E relative to the c -algebra F. 

Lemma 3. If h%ijIdX~ E 0 and the random~nc~on P* (t, 01 & {@* (f, (u), 
. . ., yno (t, a)} represents the solution of the system of ordinary differential equations 

with random right-hand sides 
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dyio aAk 
dt = - Yk. V)dr 

i 
(6.3 1 

then the progressively measurable modification of the process 

Xi0 tt) = w Jf {Y&O (t) I F, 1 

satisfies system (6.2 ). 
Let us consider the simplest example. Let q (t) E {ql (t), Q (I)} be a controll- 

able stochastic process specified by the system 

a1 = h + tlnw + WJl rll (0) = '11° 

aa = bs + rllW + h&h 71s 03 = tlr" 

In the class of determinate controls we have to determine a control {uI0, as’; bIO, 

baO) whose values in the interval [ -1 , 11 would minimize the functional 

T 

For simplicity we assume that the random processes TIO and Tpo are martingales, 
i. e. GTi’= q”(s, ro), i = 1, 2. 

Using (6.3 ) we obtain 

XI” (t) = Tie 0) ch (T - t) + Tj” (t) sh (2’ - t) 
hi0 (t, 9) = cq (4 ch (T - t) -t- aj” (s) sh (T - t), i, i = 1, 2; i+i 

Thusit follows from (5.2 ) that the controls 

uiO (t) = --sgn {MZ’i’ sh (T - t) + MTj” (ch (T - t) - I)} 

biO (t) = -sgn M {CQ’ (t) ah (T - t) -I- ajo (t) (oh (T - t) - 1)) 

i, i = 1, 2; i # j 

may prove to be optimal. It can be shown that it is in fact so, 
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