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The problem of optimal control by solution of a system of Ito®s stochastic
integral equations of the general form is considered in the case when control
parameters appear in nonhomogeneous terms and coefficients of equations,
Necessary conditions of optimality are established (in the form of principles
of minimum) for the problem of optimal control with constraints, and an ex-
ample is presented.

Two trends can be discemed in the theory of control of random processes defined by
Ito's stochastic integral equations, The first, developed in[1,2],is related to the de-
rivation of Bellman's equation for the gain function, The second, whose origin can be
traced to[3,4],is based on the derivation of necessary conditions of optimality in the
form of principles of minimum (stochastic principles of minimum).

The present investigation follows the second trend, and is devoted to the develop-
ment of a general functional method for stochastic control systems [5,6].

1, Statement of the problem, The control of a process defined by a sys-

tem of stochastic integral equations of the general form
t 1

Nelt) = @i, ¢ () + SAi (v,n(x) 8 (r))dr + SBﬁ(T:ﬂ ()b (¥)dwi(v) (1.1
1=1,2,...,n j=1,2,...,m

is considered in the case when control functions a (v, ®), b (v, ®) and ¢ (7, @)
appear in coefficients and nonhomogeneous terms of equations.In(1,1) ¢; (¢, ¢, ©),
A, (t, 2, 8, ®) and By; {t, z, b, ©) denote random fields ( @ is the event), the
second integrals are understood in [to's meaning [7], and recurrent subscripts here and
below indicate summation,
A particular example of such problem in which @y (¢, ¢, ©) = @; (®) and
functions Bj; (¢, z, b, ®) == Bj; (t) (or depend on nonrandom components of solution
1 {#, ®) ) was investigated in [3] by a method different from the one used here .
Let (Q, F, P) be the total probability space and w (¢, ®) be an m -dimen-
sional Wiener process consistent with a nondecreasing set of 0 -algebras F,CF,
¢t > 0 complete in measure P , Wedenoteby Ly (BF),1 Cp<<oo the
Banach space of the progressively measurable { BF -measurable)overthestream {Fy}
of random functions 1 (¢, ©), : =10, T] and © & Q with the finite norm

Il = 15 9 (¢,0) P d (mes x P)|'”
[0, TIXQ

Let Hy, (BF) be a set of functions from Ly (BF) for which sup M |$ (¢,
0)P<oo, 0 < ¢ < 7. Set Hyp (BF) is dense everywhere in Ly (BF).
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244 S.F.Morozov and I, P, Smirmov

Let Ly, n (BF) = Lp (BF) X ... X Lp (BF) ( n times) be the space of vector
functions & (¢, @) = {& (&, ®), - .., Eu (¢, ©)} withnorm || &[5, n = || & [lo°
4+ oo - [ En llo"-  Similarly Hp » (BF)=H, (BF) X... X Hp (BF) (ntimes).
Functions ¢; (¢, ¢, ©), 4; (t, z, a, ®), and By; (¢, z, b, ®) have the follow -
ing properties: 1) they are measurable over the totality of variables when

tel0, 7], z={ay,.. , 2} EE", 0&Q, a={ay...
am} ED* T E™b = {by, ..., bm,} =D*C E™
c={cy, «.., Cm ED°CE™

where D D', and D° are bounded sets in respective Euclidean spaces; 2) they
are F, -measurable over o for fixed ¢, x, @, b, ¢ from [0, T} X E® x D® x
D?® x D% and 3)for fixed ¢, z, and ® they are continuous over the totality
of remaining variables, Let us assume that functions A; (¢, z, a, ®) and B;; (¢,
z, b, ©) are differentiable with respect to variables Zj and that their derivatives
Axk' and Bxk’ are continuous over the totality of variables {(x, a) and (z, b)
respectively, and their absolute values are uniformly bounded by the constant number
N >0 forall ¢z, a,b, and ® in the determination region., We also as-
sume that | @; (¢, ¢, o) | << ait, 0) = H, (BF), r>2 forall ¢ DS,
Forevery te [0, T] we specify sets D (&), D® (¢), and D° (¢) of random
vectors that are  Fy -measurable and assume the values D%, D®, and D° respect-
ively . We assume that sets D" (¢), i = a, b, ¢ , are nondecreasing and continuous
on the left with respect to ¢ : Di (¢) = D" (0) |J D' (s), 0 < s <.
We consider vector functions a (¢, ©), b (¢, ®), and c¢(Z, ®) tobe admissible
controls, if their components are ~ BF -measurable and

a(t, o) = D* (1), b(t, o) = D°(t), c(t, o) = D°(¢), Vi

A random process H,n (BF) that satisfies almost certainly (1,1) for every
t = [0, T] is called the solution of system (1, 1) which corresponds to the admissible
control u (t, ) = {a (¢, 0), b (¢, 0), c(t, )} (see[7D).
Let us consider the optimization problem of finding among the admissible controls
u (t, ®) that satisfy the constraint
T

L) =M\ L (5,1,(s), u(s)) ds <0

0

a control that minimizes the functional
T

T () =M T (s, (), u(s) ds
0

where 1, (S) is a solution of system (1. 1) which corresponds to control u (s) and
M is the symbol of mathematical expectation,
Let functions L (¢, z, a, b, ¢, ®) and J (¢, z, a, b, ¢, ®) satisfy the fol -
lowing conditions: 1) be measurable over the totality of variablesfor ¢, %, a, b, ¢,
o= [0,T] X E* X D* x D*® X D° X Q; 2)be F,-measurable with respect
to o for fixed ¢, z, a, b, c; and 3) be continuous over the totality of variables
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(a, by¢) foralmostall £, 2z, and ® from [0, T] X E® X Q and be twice
differentiable with respect to variables k. Let furthermore the following conditions
for the order of increase with respect to z:

LILIS Kt +12l), T2 ) | Ly, | << Ko (1 + 2 ]e-)
| Vi b | Loy |<< K (L + |2 2), 0 <(r + 2)12

where K, K, and K 3 are constant numbers , be satisfied for almost all ¢, a, b, ¢,
and ® from the determination region.

2, Variation of controls, Let u° (t, o) = {a&° (¢, o), ¥’ (¢, @), (¢,
®)} be the optimal admissible control and 1° (¢, ®) the relates solution of system
(1.1), Let us derive a variant of control ye (¢, 0) = {a® (¢, o), B¢ (¢, ),
ce (t, w)}.Let Tg & [0, T]. We take a finite set of points {t,} from the interval
('50, T). Let {a@,'} be an amitrary finite set of nonnegative numbers and {;’ (©)},
{b (@)}, and {c' (@)} be sets of random vectors from D® (ty), Db (te), and
D° (x,) respectively, We define the component g® (£, ®) of the control variant by

e @), tel}(y)
a4 ©) =1 ot o), te{O,Tl\}Jkaz”k)

1 1-1
!
Oy () = [Tk - 8*5.‘11 o'y T — 8{2}1 ak*)

For fairly small & 0 <<e < &q, intervals I,  evidently lie in (%, T)
and do not intersect pairwise. Components ® (£, ®) and ¢® (¢, ®) of variant
u* (¢, ®) with corresponding parameters {b,! (w)} 2nd {¢,' (0)} are similarly
defined,
The following theorem on the existence of solution of system (1, 1) and its stability
with respect to control perturbations is valid,

Theorem 1, If functions ¢ (¢, ¢, ©), 4; (¢, 2, a, @) and By; (¢, z, b, o)
satisfy the conditions formulated above , then there exists a positive number ¢*, 0 <
g* < g, suchthat to each variant u® (¢, @) comesponds for 0 < e < e* the
unique solution ¢ (¢, ©) & H,, (BF) ofsystem(1,1) and [ —° [[,n — 0
when & - 0.

Proof, The existence an uniqueness of solution of system (1, 1) directly follows
from the theorem in [7]. Since for any admissible control function @ (¢, ¢ (¥)) &
H, ., (BF) hence also the related solution 1 (f) & H, , (BF).
To prove the stability of the optimal solution we consider the system of linear in -
tegral stochastic equations

a® (5)) & (s) ds + (z.1)

&@~%@+S
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t

' 9B i e
\ B (5, e (5) 5 () B (5) oy )

where the "average" points 1;;,® and 1)g;;°® are determined with unit probability
by the equalities

A (t,A ne(8),a®(2)) — A, (¢, ° (), a® (2)) =
a
'ﬁ (, Nrik (2), a®(t)) Aei (t)

By; (8, m® (2), b (¢)) — By; (2, m° (¢), &* (¢)) =
aB,, e
Wk- (t’ Neijk (t)’ be (t)) Aenk (t)

(DM (2) = M (£) — i (2))

Lemma 1, Thesolution § (f) = Hp, (BF) of system (2, 1) exists and is
unique for any function V() e Hpn (BF), p>2 and the estimate

(2.2)

I8 llon < Co I ¥ llp, s Co = Cp (0, m, 1, T, N) (2.3)
is valid,
Proof, The existence and uniqueness of solution of system (2, 1) follows from the
same theorem in [7]. By applying the Hblder inequality to indentity (2, 1) we obtain
- : 94, P
ror<e{ivor+|{Zhoges) +

[
'}
from which ,using the estimate of Ito's integral of moments [8 ], we have

! n
Mg P<3PH{Mv 0 p+Cy§ 3 Mg, ()P
o k=1

0B
,S oz, () & () dw; (s)
0

Summing by i, applying Gronwall 's lemma and integrating along [0, 7], we
obtain the required estimate (2.3).
To prove the theorem it remains to note that the random vector function § (f) =
ne (£) — n° () satisfies system (2,1) when

t t
i (t) = AuD; () = Ay (t) + § 04, () ds + § 8,8y (5) dws ()
1] 0

H,.(BF)

Ay (t) = @1 (2, ¢ (2)) — @1 (2, ¢° (D)) |
AaAi (t) = Ai (t9 "]o (t)1 a® (t)) - Ai (t’ Tlo (t)’ aa (t))
AyBij (1) = Bij (5, m° (8), B®(2)) — By (£, m° (2), b° ()

Then on the basis of (2,3 ) we have
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I =l a< Gl AP [r,n =0, e—0
A.L. By

Derivation of integral representations A J and B
egral representations A and gise DY

A wa

9 -k A -
Lemma 1 the linear system (2, 1) determines the linear operator R,': Hp n (BF) —
Hp o (BF), £ = Ryyp. Sincetheset Hp . (BF) isdense everywhere in Ly
permits the extension in continuity

(BF) and estimate (2,3) is valid, hence Rs
of Rs in Ly o (BF),i.e, the continous operator Re : Lyp, n (BF)— Ly, , (BF),

pP>2| R [l << Cp hasbeen determined,
We define the increment Agn (¢) as follows:
Aaﬂ = ReAu(D (.1

To determine the first variations of functionals J and L we define the integral re~

presentations of increrments by
AJ (U= J (u?) — J (v°), A L (u)= L (u?) — L (&°)

As an example let us consider A,J

T
Bl = M § 2 5, e (0) u* 5) Aene 5) ds + M
0

AJ(s)ds= 2

LI tT

ALT + 88T
(A T () = J (¢, n° (8), w® () — J (£, 0° (8), & (1))
where the average points 7g,® are determined by equalities of the form (2,2) for

function J.
We determine in L, , (BF) theset(in &) of bounded linear functionals

T
(Tek: (Tor) = M 2 (6,1 61,1 6) e (5) ds
0

Using the Riesz theorem on the linear functional representation , by virtue of (3.1)
(Te, ReBu®D) = (Re*Te, A D) = (Qes AD) =

we obtain
APT = (T¢, Agn) =
T

M xe (1) D5 (8) dt, = Re*Ts & Ly, (BF)

Substituting this expression into (3, 2) we obtain the sought integral representation
(3.3)

i
Aol = M %2 (1) A, (1) dt + M { AT (1) dt
0 0

Let us show that for 1 << ¢’ << 2
(3.4)

% — % llgsn =0, e—0
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where T

1° = Ro*To, (Tortp) = MS

0

97 (s, 1 (5), u° (5)) i () s
k

and Ry : Ly, (BF)— Ly, (BF), p> 2 s a linear operator linked to system

t
B =w()+ 5-3—‘3; (5,°(5), @° () B (5) ds -+ (3.5)

¢

S‘ﬁh (5,77 (5),1° (9)) B s) o ()

We have (g > 2, i/q—q-ifq =1)

BoE — 2%l n<C || Re 13 Ly, n—~Ly n N Te—Ty H(Lg,n)‘* -+ (3.6)
o flczg, wt ll Be— Rolley yry o
We shall show that the last operator norm in (3, 6) tends to zero when & — (0, We
take a monotonically decreasing sequence of positive numbers 8, —> 0 with m — oo,
For every function @ in a unit sphere in L, (BF) there exists a sequence {¢,,} —
Hyn (BF) suchthat | @ — @m flgn << 6. Let {87}, {E"} — H,, (BF)
be sequences of solutions (2.1) and (3, 5), respectively , that correspond to {@m}. Then

1 {Be — Ry) @ llagn < || Re (9 — ®m) flon + 1 Bo (@ — ®m) flan + (3.7)
| Re®m — Ro@m [lan << 2C, T@2205,, | 8™ — & 50

Using the estimate of moments of Ito’s integral, Gronwall’s lemma , and Hblder's
inequality , we obtain for the norm the estimate

B — B fon? < Ky € (4 + 8m)2 | Te flrcon.

=13 if,f (8, miix (8), @® (1) — @ (t»[“—f-
ik
= B, v

(K4, By = const)

Since | Mt — M° L | Naije — 1° ], and | ut — u° {—0, &0 in propor-
tion to mes X P (Theorem 1), functions Ax and Bxk are continuous with
respect to  (z, @) and (r, b) , respectively,and are bounded,hence || e || — 0
when &-—0.

It now follows from (3,7) that || (Re — Ry) @ |lg,, — O uniformly when & — 0
for @ selected from the unit sphere , which means that

| Be — Ro 1

The conditions imposed on the integrand of functional J ensures the following
passing to limit:

anLan—>0, 850 (3.8)

17— Rolliy py#—0, =0 (3.9
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Thus (3.4 ) follows from (3, 9), (3.8), and (3.6).

4, First variations of functionals., We define variations of functionals
as the limits
6 = lim ——A J, 6L = lim —A L
g0 % o 8,0 Ok %

where {e,} and {0,} aresomesubsequenciesofthesequence €—0 « From(3.3)

e have
T Ay = =M e, el bh )~ e e, o
* mley
AY; =M 13;, Ve (A () + 0 (1) Aads (1)) dit +
mr)

t
g% (® [S AyB;; (s) dw; ()] det= APT + ADT

(wws§mww

Using (3.4) it is possible to show that for any pau- of integers N and M and an
arbitrary set of random quantities {a,' (©)}, {&' (w)}, and {Ck (m)} k=1,

2, ..., N and [=1,2, ... M thereexistsa set C(To, T),
mes EffM =T —7, such that for any arbitrary set of points {Tk} C ENM
lim — (AP + APT fg (v & (T
lim ( + )= Eak [gr (tx) + g2 (T)] (4.1)

Lk
8" (1) = M1J (1, v (3), &, bt ) — T (2, n° (), w® (x))]
g (t) = M {x° (v) [9: (7, o) — @i (v, &® ()] + 8° (1) X
[4; (v, 0° (), &) — 4 (v, v°(x), a° (D)1}

For passing to limitin (1 /&) A;®J we impose additional constraints on the
stream {F;} of 0-algebras and make the necessary assumptions,namely that

Fr=olw(s),s<<t) (4.2)

Lemma 2. If condition (4,2) is satisfied and @ (¢, ) & L, (BF) , there
exists a unique function A (2, s, ®) & Ly m (B X BF) such that mes X P -nearly

everywhere in [0, T] X Q )

¢ (t,0) = Mo (t,0) + (Mt 5, 0) dw; (5, 0) (4.3)
0

Operator G : A = Go from L, (BF) is thenboundedin Ly, (B X BF)
and |G| =1. Here Ly, (B X BF) isthe L, -spaceof m-measurable
random fields with B X BF -measurable ( B is the Borel O -algebra in E! )
components,

Proof, Let 1M (f ©) = %o, (ONel®) + ... + e, 71 (0 (@) & L, (BF),
where {t), k= 0,1, ..., n represents the nmte subdivision ot segment [0, T],
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Xia gy  is the indicator function of the half-interval [a, ), and Tk (@) — Fy
is a measurable random quantity (with finite second moment). If conditions (4,2) are
satisfied , then according to [9], there exists for each # a A™ (s, ©) & Ly, ([0,

t} X Q, BF) such that almost certainly

L
(@) = M @) + { 1 (s, 0)dw; (s, @)
0

Continuing A% (s, @) in [0, 7] X Q through zero and setting & {4, s, ©) =
Ko (AP (s @) + . ..+ Xty T1 (M (s, ®) we establish the lemma for step
functions, Let ¢ (¢, @) be an arbitrary function from L, (BF) which we approximate
by a sequence of step functions | N —olyg —0 (see {10]) when n — oo.
Let p®™ (¢, s, @) be a sequence of stochastic kemels that corresponds to {15} . From
(4.3) we then have

V™ 5, 0) = 1,5, @)] dwy (5, 0) =
’ Ny, (£ @) — M (4, ©) -+ M [, (¢, ©) —n,, (¢, ©)]
from which ,using the properties of Ito's integral, we obtain
I — O aer S 2 — k=0, kn—oo

The sequence {u™} is thus fundamental in L, , (B X BF) and,because of
completeness of that space, it converges to some element A of the latter, The Fubini
theorem on stochastic integrals (see [11]) shows that the stochastic integral

t
S M (¢, 5, ) dw, (s, ©)
]

is determinate and BF -measurable with respect to ¢ and @. Finally
t
lo— Mo —{ 2t 5, 0)dw; (s, @) <[P —1, o+
9

M (@ —mn,) Ui,,(n,T) +ir— p™ ILs, m(BXBF) 0, n—oo

By raising the identity (4,3) to the second power and integrating with respect to
measure P, we obtain a confirmation of the second statement of the lemma,

Applying the proved lemma tothe set (& >> 0 ) of functions %* (¢, @) €
Ly (BF), we obtain a set of matrices {A;2 (¢, s, @)} : {Asr® ..., Aim®} = GY;°.
We introduce the notation

T
%?j (t‘ (D) = S }":7 (S, t, (0) dse= Lg (BF)

t

and shall show that for 1 <7 8 << 2
| %% — %% fls > 0, g—0 (4.4)

Applying twice the Holder inequalities and the lowerbound estimate forthe § -mo-
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ment of Ito's integral [8 ], we obtain the sequence of inequalities

T
Il %55 — %3 llo"EMS | %5 — i; [ ds =
T 0

S

cin O

IS [N (2, 5, ) — A (2, 5, )] dE [ ds <

S

ds{§|v<->—x°(->|°dt(T—s)°-1}<
{80/2'1§ A () — Ao () Pt} ds <
i

{ ooy —ae oy par} <

S
S

g &
S

S N CL v H D0
&

[Ae(-) — A°PPds [odt <

(=T L

=]
o

Efi dtMltS[M(')—7~°(')]dw(3)|6<

D
7:_ 2892 —x°l8,n  (As = As(8)>0)

where the inequality
(T — 2K Dptt1, 0T, 0< Dy =Dy ()< oo

is also used . Hence (4, 4) follows from (3.4).
Reverting to A4 J we now have

T t
A0 = M S 0] [S ABy; (5) duwy (s)] dt =

<9
N

o (£, 5) dw; (s)SAbBU (s) dw; (s) =

aM

[P T L T |

s
g

Mif® (¢, 5) ApBy (s) ds = MS ApB; () as® (s) ds =

M.

M § TeAB(s) (e (s) ds
()
Using (4, 4) it is possible to show that for any pair of integers N and M and an

arbitrary set {B! (@)} there exists a set EyN™ C [vo, T] of complete measure
mes E,VM — T—1,such that for an arbitrary set of points {%} ENM

lim —— A S = T
’;l_lio o, 3 Zak gs (Tx)

1,k

N4
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gslk (T) = MTr[B (Tv Tlo (T)a bkl) — B (T7 7]0 (T): b° (T))] (xo (T))'

where Tr denotes the taking of a matrix spur and the prime denotes a transposition,
Taking into account (4, 1) we find that for T, E,NM [ E,VNM the first
variation of functional J may be represented as

8J = %akl let (vx) - g5 (ve) + &' (Th)] (4.5)

The determination region in (4, 5) depends on numbers N and M and the specific
sets  {a,'}, {bs'}, and  {c,!}. To eliminate that dependence we separate in L, (Q,
F, P) the denumerable and everywhere dense net of random quantities §,. It can
be shown that transitions to limit which determine the variation 8J are realized in
some subsequence {e,} onset E C (%y, T), mes E = T — 1, for any amitrary

admissible sefs
(3T D (%) N Seym B} T D8 (o) ) Soumy
{e'} T D (o) N S2,me
(S = 8 X ... X 83 (ntimes))

Introducing by analogy to 7, and ¥° the pair Pg, v® = R,™ P,, we deter-
mine variation §L.

5, The principles of minimum, Letus considerin E*® the set of pairs
Q = (8J, 8L) which isobtained forall possible admissiblesets of points {%,} C E,

numbers  {o,'} , and random quantities {a;'}, {bx'} and {c;!}. It can be shown
that @ is a convex cone whose vertex is at the coordinate origin, Let R = {#;, 5 :
z; < 0, z, << 0} C E?. Optimality of the admissible control u° (¢, ®) implies
that cones Q and R do not intersect, which shows that they are separated by some
straight line with  ® = (p;, Mo), W% + pe® =0  as its normal vector, Directing
that vector toward cone ) we obtain

10 - po6L > 0 5,1)
Let us specify the particular set of parameters
T C E; o (@), b (0), ¢f (0); &t =1

Calculating the related set of variations with allowance for the continuity of func-
tions A;, Bij;, and @; with respect to a, b, and ¢ ,respectively,and for the
properties of sets D% (), i = a, b, ¢, we obtain from (5. 1) the following definition
of the principles of minimum,

The principles of minimum, If u°(f, ®) is the optimal admissible
control and %° (¢, ) & H,, (BF), r > 2 s the related optimal solution of
system (1, 1), then there exist functions ¥° and v° & Ly, (BF) that are uniquely
determined by the operator formulas

¥ = Re*Ty, v° = R* Py

and nonnegative numbers fi;, [ta (y® -+ pe? 7= 0)  such that almost everywhere in

{0, 71
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MH (1, v° (¢, 0), a° (¢, o), b°(¢t, 0), (¢, 0), @) =

inf MH (2, n° (¢, ), a (), b(0), ¢(), o) (5.2)
H (t’ 11° (t? (‘))’ glv Czi C31 0)) = [y [J (t’ 7I° (t7 (1)), ;1) C2’ C3,’ 0)) +

1 o) @; (¢, L3, @) + 0,° (¢, o) 4; (¢, n° (¢, @), Ly, ) 4

Tl’ B (t: no (t’ (2)), §27 (0) (xo (t’ (!)))'} + Hz [L’ (ts 'ﬂo (t: 0))’ §1, Qz; §3’ (D) +
T

vi2 {t, o) @; (¢, L3, ©) + S v;® (s, w) dsd; (¢, n° (1, ©), Ly, 0) +

t

Tr B (¢, n° (¢, 0), s, 0) (0° (¢, e)))']
where Inf istakenwithrespecttoall a (0)=D%?), b () D¥(t),and c(0)e=D°(2) .

Notes, 1° It is possible to obtain from (5,2 ) incomplete principles of minimum
for any two groups of control parameters, as well as for each group separately . For in ~
stance, to obtain the principles of minimum for the group of parameters {a, ¢} itis
sufficient to set in the right-hand side of (5.2) & (@) = b° (®) = &° (¢, w),and so on.

2°, For the incomplete principle of minimum to be valid for the group of para-
meters {a, ¢} it is sufficient that the assumptions made in Sect, 1 are satisfied, For
the validity of that principle for a group of parameters containing parameter {b} itis
necessary that condition (4, 2) is satisfied.

3°,If DI(8),i=a,b, c, isasumed tobe a set of vectors from D? that are
independent of the event ©, then (5,2) represents the necessary condition of optimality
in the problem with determinate control.

6, Example, It can be shown that operator R, introduced in Sect, 3 has a
bounded inverse operator R,~! and that, consequently , the equality (Rg™)* = (R,*)™
is satisfied, This means that functions ¥° and +° can be determined by solving the
conjugate problem

R = Toy (R = Py (6.1)

When condition (4., 2) is satisfied it is possible to obtain an explicit formula for
operator (R¢H)* and thus prove that the solution of problem (6. 1) satisfies mesX P -
almost everywhere the identity

24
% (1, ©) — —E (&, 9° (£, @), 2° (8, @), @) M {6,°(t, ©) | F ] — (6.2)

c'?:::i

0By; | . R of o
axi (£, n° (¢, @), ¥° (¢, ©), @) Mg ¢ @) 57{ &0 (¢, w), u® ¢, o), 0)

where M { E|F ] representstheconditional mathematical expectation of the random
quantity E relative to the o -algebra F,

Lemma 3, If @8Bi;/ 0xx = 0 and the random function #°{t, ) = {n° (¢, @),
.. ¥n° (t, ®)} represents the solution of the system of ordinary differential equations
with random right-hand sides
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dy.° 0A ar
= O O — 5 () (D) =0 (6.3)
3 1

then the progressively measurable modification of the process

o 04,
%0 (8) = A ® + 2=, M{y>WIF}

satisfies system (6.2),
Let us conside: the simplest example. Let 9 () = {0, (1), n, (1)} be a controll -
able stochastic process specified by the system
dny = (ay + Ng)dt + bdwy My (0) = ny°
dng = (23 + N)dt + dedw; 1, (0} = 1,°

In the class of determinate controls we have to determine a control {a,°, 4,% &,°,
by°} whose values in the interval { —1, 1] would minimize the functional

T

J (@) =M (75 O m )+ T () m ()] ds
[1]

For simplicity we assume that the random processes 7,° and 7,° are martingales,
i.e. GT=a’s,m), i=1,2.
Using (6.3 ) we obtain
W=7 @O ch(T— 04+ TP @) sh (T —p)
M) =al@eh(T —)+a° @) eh(T—0, ij=12 isj
Thus it follows from (5. 2) that the controls
ai° () = —sgn (MT°sh (T — ) + MT° (ch (T — 1) — 1)}
5° (t) = —sgn M {a;° (1) sh (T — &) + a;° (¢} (ch (I' — 1) — 1)}
Li=1,2; i%j

may prove to be optimal, It can be shown that it is in fact so,
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